A Good Idea in Ramsey Theory

R. J. Faudree†
C. C. Rousseau‡
R. H. Schelp§

Abstract. Burr had the idea of defining the connected graph H to be G-good in case the Ramsey number $r(G, H)$ is given by $(\chi(G) - 1)(|V(H)| - 1) + s(G)$, where $\chi(G)$ and $s(G)$ denote the chromatic number and chromatic surplus, respectively, of G. This paper surveys what is known at present concerning the occurrence of Ramsey "goodness" and ends with several open questions.

1. Red vs. Blue. The Ramsey number $r(G, H)$ is the smallest p such that in every two-coloring of the edges of the complete graph K_p using colors red (R) and blue (B), either the red subgraph $\langle R \rangle$ contains G or the blue subgraph $\langle B \rangle$ contains H. Attempts to forge a general theory in which the an exact formula for $r(G, H)$ covers a broad range of cases led Burr to introduce the concept of Ramsey "goodness." Specifically, Burr defined the connected graph H to be G-good in case $r(G, H) = (\chi(G) - 1)(|V(H)| - 1) + s(G)$, where $\chi(G)$ and $s(G)$ denote the chromatic number and chromatic surplus of G, respectively. [See §2 for the definition of chromatic surplus.] This paper surveys research related to this concept carried out by several investigators, including Burr, Erdős and the authors. Throughout, H will taken to be a connected graph of order n. When necessary, we will assume that n is large.

†Department of Mathematical Sciences, Memphis State University, Memphis, Tennessee 38152.
‡The research of this author was supported by Office of Naval Research grant N000014-88-K-0070.
§The research of this author was supported by National Security Agency grant MDA 904-89-H-2026.
2. In the Beginning. Chvátal’s observation concerning the complete graph-tree Ramsey number is often cited for its seminal effect in generalized Ramsey theory.

Theorem 1 (Chvátal) If T is any tree of order n,
\[r(K_m, T) = (m - 1)(n - 1) + 1. \]

However, the following result of Bondy and Erdős [1] should be cited as well, since the proof of this theorem highlighted techniques which have been used in many subsequent papers.

Theorem 2 (Bondy and Erdős) If $n \geq m^2 - 2$, then
\[r(K_m, C_n) = (m - 1)(n - 1) + 1. \]

To introduce the idea of Ramsey “goodness,” we begin by defining the chromatic surplus of a graph.

Definition 1 Let $\chi(G)$ denote the chromatic number of G. The chromatic surplus of G is the largest number $s = s(G)$ such that in every vertex coloring of G using $\chi(G)$ colors, every color class has at least s members.

The following result of Burr [2] generalizes an observation of Chvátal and Harary [12].

Theorem 3 (Burr) If H is any connected graph of order $n \geq s(G)$, then
\[r(G, H) \geq (\chi(G) - 1)(n - 1) + s(G). \]

The example which establishes this bound is extremely simple.

Example 1 With $p = (\chi(G) - 1)(n - 1) + s(G) - 1$, two-color the edges of K_p so that $\langle B \rangle$ consists of $\chi(G)$ disjoint complete graphs, $\chi(G) - 1$ of order $n - 1$ and one of order $s(G) - 1$. In this two-coloring, there is no connected blue subgraph of order n and there is no red copy of G.

To see that there is no red copy of G, note that an embedding of G into the red subgraph would constitute a partition of the vertices of G into $\chi(G)$ independent sets with one of the sets containing at most $s(G) - 1$ vertices. In light of Theorem 3, Burr made the following definition [2].
Definition 2 A connected graph H of order $n \geq s(G)$ is called G-good if

$$r(G, H) = (\chi(G) - 1)(n - 1) + s(G).$$

For the case of $G = K_m$, we simply say that H is m-good.

3. Tools. The following lemma is a key element of many proofs of goodness for sparse graphs. A version of this lemma can be found in the paper of Bondy and Erdős [1].

Lemma 1 (Path Extension) Suppose that the edges of a complete graph are two-colored (R and B) and assume that (x_1, x_2, \ldots, x_a) is a path of length $a - 1$ from x_1 to x_a in $\langle B \rangle$. Let $Y = \{y_1, y_2, \ldots, y_b\}$ be the set of vertices not on this path. If $a \geq b(c - 1) + r$ then at least one of the following must occur.

1. There is a path of length a from x_1 to x_a in $\langle B \rangle$.
2. $K_c \subset \langle R \rangle$
3. There is a r-element subset of $X = \{x_1, x_2, \ldots, x_a\}$ which is completely joined in $\langle R \rangle$ to Y.

Definition 3 A path (z_0, x_1, \ldots, x_k) in a graph H is said to be suspended if each of its internal vertices $x_1, x_2, \ldots, x_{k-1}$ has degree two in H.

Lemma 1 is particularly useful in proving that H is G-good in those cases where H has an appropriately long suspended path. [See especially Theorem 4.] Proofs of goodness results for trees are aided by the following trichotomy.

Lemma 2 (The Tree Trichotomy) Every tree of order $n \geq 4rst$ has at least one of the following:

1. a suspended path on r vertices,
2. a set of s independent end-edges,
3. a star consisting of t end-edges.

To prove that $r(G, T) = (\chi(G) - 1)(n - 1) + s(G)$ for a given graph G and all trees of order n, one relies on various algorithms for embedding T into $\langle B \rangle$, assuming that $\langle R \rangle$ contains no copy of G. Use of the tree trichotomy is one such embedding scheme, but there are others. Useful tree embedding algorithms include
(1) Trichotomy,
(2) Greedy algorithm,
(3) Exchange,
(4) \((1/3, 2/3)\) divisions.

The last item refers to the fact that by deleting the appropriate edge or vertex from a tree, we can control the orders of the resulting components. The following result is used in [15].

Lemma 3 Let \(T\) be a tree of order \(n\). Then one of the following occurs.

(1) There exists an edge \(e\) of \(T\) such that the order of each component of \(T - e\) is \(\leq \lfloor 2n/3 \rfloor\).
(2) There exists a vertex \(v\) of \(T\) such that the order of each component of \(T - v\) is \(\leq \lfloor n/3 \rfloor\).

4. Using the Tools. To illustrate the applicability of Lemma 1 and the other tools in §3, we give some representative proofs. The first theorem was proved by Burr in [2]. Using this result, he proved the striking fact that for every graph \(G\) and connected graph \(H_0\), there is an number \(n_0(G, H_0)\) such that every graph \(H\) of order \(n \geq n_0\) which is homeomorphic from \(H_0\) is \(G\)-good. The proof of this theorem relies heavily on Lemma 1 or the "long suspended path" argument.

Theorem 4 (Burr) Let \(G\) be any graph and suppose that \(H_0\) is a connected graph of order \(k\). Choose an edge of \(H_0\) and form the sequence of graphs \(H_0, H_1, \ldots\) in which \(H_j\) is obtained by adding \(j\) new vertices which subdivide the chosen edge. Then \(H_{n-k}\) is \(G\)-good for all sufficiently large \(n\).

Proof. The proof is by induction on \(\chi(G)\). If \(\chi(G) = 1\) then \(G = K_1\) and the result is trivial. [Although this case violates the usual convention under which neither \(G\) nor \(H\) have isolated vertices, it does provide a valid anchor for the induction.] Now assume \(\chi(G) > 1\) and color the vertices of \(G\) with \(\chi(G)\) colors so that the color classes \(C_1, C_2, \ldots, C_\chi\) satisfy

\[s = |C_1| \leq |C_2| \leq \cdots \leq |C_\chi|. \]

Let \(G'\) be the graph obtained from \(G\) by deleting \(C_\chi\). Then \(G'\) has chromatic number \(\chi(G) - 1\) and chromatic surplus \(s(G)\). Set

\[c = |V(G)|, \quad r = |C_\chi|, \quad b = c - r \quad \text{and} \quad a = b(c - 1) + r. \]
Set \(p = (\chi(G) - 1)(n - 1) + s(G) \) and let \((R, B)\) be any two-coloring of the edges of \(K_p \). By taking \(n \) sufficiently large, we ensure that \(p \geq r(G, H_{a-2}) \). Thus, assuming that \((R)\) contains no copy of \(G \) and \((B)\) contains no copy of \(H \), we conclude that for some \(j \) satisfying \(a - 2 \leq j < n - k \), \((B)\) contains \(H_j \) but no \(H_{j+1} \). Select a specific copy of \(H_j \) in \((B)\). Let the subdivided edge (suspended path) in this copy of \(H_j \) be \((u, x_1, x_2, \ldots, x_j, v)\). Since \(|V(H_j)| < n \), there are at least \((\chi(G) - 2)(n - 1) + s(G)\) vertices which are not in this copy. It follows from the induction hypothesis (assuming \(n \) to be sufficiently large) that disjoint from the blue copy of \(H_j \) there is a red copy of \(G' \). Now apply Lemma 1 to the two-colored complete graph spanned by \(\{u, x_1, x_2, \ldots, x_j, v\} \) and the vertices of \(G' \). In view of our choices of \(a, b, c \) and \(r \), alternative (1) yields a copy of \(H_{j+1} \) in \((B)\) and alternatives (2) and (3) each lead to copies of \(G \) in \((R)\). Thus a contradiction has been reached. \(\square \)

The next result [4] uses a variety of methods, including "exchange" and "suspended path" techniques.

Theorem 5 (Burr, Erdős, Faudree, Rousseau Schelp) If \(H \) is any connected graph with \(n \geq 4 \) vertices and \(q \leq (17n + 1)/15 \) edges, then \(H \) is 3-good.

The proof of this theorem uses the following lemmas.

Lemma 4 Let \(H \) be a graph of order \(n \). (a) If \(H' = H - x_0 \), where \(x_0 \) is a vertex of degree \(d \) in \(H \), then

\[
r(K_3, H) \leq \max\{r(K_3, H'), (d + 1)(n - 1) + 1\}.
\]

Consequently, if \(\delta(H) = 1 \) and \(H' \) is 3-good, then \(H \) is also 3-good. (b) Suppose that \((u, v_1, v_2, w)\) is a suspended path of length three in \(H \). Let \(H'' \) be the graph obtained from \(H \) by shortening this suspended path to one of length two. Then

\[
r(K_3, H) \leq \max\{r(K_3, H''), 2n - 1\}.
\]

Proof. (a) In a two-colored \(K_p \) where

\[
p = \max\{r(K_3, H'), (d + 1)(n - 1) + 1\},
\]

we may assume a copy of \(H' \) in \((B)\). Select such a copy and note that if there is a vertex exterior to this copy which is adjacent in \((B)\) to the appropriate \(d \) vertices and can therefore play the role of \(x_0 \), then there is a copy of \(H \) in \((B)\). Otherwise, one of the \(d \) vertices has degree at least \(n \) in \((R)\) and there is either a \(K_3 \) in \((R)\) or a \(K_n \) in \((B)\).

(b) In a two-colored \(K_p \) where

\[
p = \max\{r(K_3, H''), 2n - 1\},
\]
we may assume a copy of H'' in (B). If the path u, v, w in this copy of H'' is extended to a path of length three in (B) by adding an exterior vertex, then (B) contains H. Let X denote the set of exterior vertices and consider the red graph induced by X. Let x_1x_2 be any edge of this graph and suppose that there is no path extension involving either x_1 and x_2 and there is no K_3 in (R). Since there is no K_3 in (R), we may assume that $x_1v \in B$. Then the six edges joining $\{x_1, x_2\}$ and $\{u, v, w\}$ are completely determined. In particular, $x_2u \in B$, $x_2v \in R$ and $x_2w \in B$. If the red graph induced by X contained an edge x_3x_4 which is independent from x_1x_2, then (with z_4 playing the role of x_2 in the argument just made) we would have $z_4u \in B$, $z_4v \in R$ and $z_4w \in B$. In this case, $x_2z_4 \in R$ yields a K_3 in (R) and $x_2x_3 \in B$ extends the $u - w$ path to u, x_2, x_4, w and yields a copy of H in (B). Thus, we may assume that the red graph induced by X is a star. Let x_0 be the center of this star. Since x_0 is adjacent to either u or v in (R), the fact that there is no K_3 in (R) means that one of these vertices (u or v) is adjacent in (B) to every other vertex to which x_0 is adjacent in (R). This produces a K_n in (B) and so a contradiction. □

Lemma 5 Let H be a connected graph with $j \geq 4$ vertices and $j + k$ edges, where $k \geq 1$. If H has no vertex of degree one and no suspended path of length three, then $j \leq 5k$ and this bound is sharp.

Proof. For each vertex of degree two in H, replace the associated path of length two by an edge. If the resulting multigraph has h vertices, then it has $h + k$ edges. Since this multigraph contains no vertices of degree less than three, it follows that $3h \leq 2(h + k)$, so $h \leq 2k$. Restoring the original vertices of degree two (at most one for each edge of the multigraph), we see that H has at most $2k + 3k = 5k$ vertices. The example of $K_{2,3}$ shows that this bound cannot be improved in general. □

Lemma 6 If H is a graph with $n \geq 2$ vertices and q edges, then

$$r(K_3, H) < 2q + n.$$

Proof. The proof is by induction on n, with the $n = 2$ case being immediate ($r(K_3, K_2) = 3 < 4$). Now with $d = \delta(G) \leq \lceil 2q/n \rceil$, let H' be obtained by deleting a vertex with degree d and apply Lemma 4 to get

$$r(K_3, H) \leq \max\{2(q - d) + (n - 1), (d + 1)(n - 1) + 1\}$$

$$< 2q + n.$$

This completes the proof by induction. □

Remark. Harary conjectured that

$$r(K_3, H) \leq 2q + 1$$
for all graphs \(H \) with \(q \) edges, and this was proved recently by Sidorenko [18].

Proof of Theorem 5. Let \(H \) be a connected graph with \(n \geq 4 \) vertices and \(n + k \) edges. For the cases \(k = -1 \) and \(k = 0 \), the fact that \(H \) is 3-good follows immediately by induction using Lemma 4. Now suppose that \(1 \leq k \leq (2n + 1)/15 \) and \(r(K_3, H) > 2n - 1 \). By repeated use of Lemma 4, we obtain a connected graph \(H' \) which satisfies \(|E(H')| - |V(H')| = k\) and \(r(K_3, H') > 2n - 1 \), and which has no vertex of degree one and has no suspended path of length three. Let \(j \) denote the number of vertices of \(H' \). Then \(4k \leq j \leq 5k \). The upper bound follows from Lemma 5 and the lower bound holds since, otherwise, \(r(K_3, H') < 2(k + j) + j < 14k - 3 < 2n - 1 \) by Lemma 6. Let \(l \) denote the number of vertices of degree two in \(H' \). Since \(H' \) has \(j \) vertices, \(j + k \) edges and no vertices of degree one, we have \(2l + 3(j - l) \leq 2(j + k) \) and so find \(l \geq j - 2k \geq 2k \). Since \(H' \) has no suspended path of length three, vertices of degree two are non-adjacent. If all vertices of degree two were deleted from \(H' \), the final graph \(H'' \) would have \(j - l \leq 3k \) vertices and \(j + k - 2l \leq 2k \) edges and so satisfy \(r(K_3, H'') < 2(2k) + 3k < 2n - 1 \) by Lemma 6. Thus, there must exist a graph \(H'' \) satisfying \(|V(H'')| \leq 5k \) and \(r(K_3, H'') > 2n - 1 \) which contains no vertices of degrees one and for which the deletion of some vertex \(x_0 \) of degree two yields \(r(K_3, H'' - x_0) \leq 2n - 1 \). Since \(3(5k - 1) + 1 \leq 2n - 1 \), the situation just described contradicts part (a) of Lemma 4. □

Remark. In view of the progress made recently by Sidorenko [18], it would seem likely that the result given in Theorem 5 could be strengthened considerably. As the proof stands, however, a stronger result would require an appropriate upgrading of Lemma 4 in addition to Sidorenko’s improvement of Lemma 6.

5. The Present Landscape. Representative results concerning \(G \)-good graphs are shown in Fig. 1. In this table, B, E, F, R, S and Sh stand for Burr, Erdős, Faudree, Rousseau, Schelp and Sheehan, respectively.

In the column headed \(G \), all notation is standard except for the use of \(M(\chi, m) \) in row five of the table.

Example 2 Let \(M(\chi, m) \) be the graph of order \(m\chi \) and chromatic number \(\chi \) given by

\[
M(\chi, m) = K_m + \cdots + K_m + mK_2.
\]

Thus the vertex set of \(M(\chi, m) \) is partitioned into \(\chi \) \(m \)-element independent sets. One pair of these sets is joined by a matching and the remaining pairs are completely joined.

The result of Burr and Faudree states that \(G \) is a graph with chromatic number \(\chi \) and surplus chromatic surplus 1 such that all large trees are \(G \)-good if and only if \(G \) is a subgraph of \(M(\chi, m) \) for some appropriately large \(m \).
In the column headed H, there are conditions which typically require to be large and sparse. In this column, T denotes an arbitrary tree of order n, $W_{1,n-1}$ stands for the wheel with $n-1$ spokes and B_{n-2} denotes the book with $n-2$ pages ($B_j = K_2 + K_j$). Also, $q(H)$ denotes the number of edges of H and $\Delta(H)$ denotes its maximum degree.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Reference</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
</table>
| B | [2] | arbitrary | hom from H_0
 \hline | | | $n \geq n_0$ |
| BE | [3] | K_3 | $W_{1,n-1}$
 \hline | | | $n \geq 5$ |
| BEFRS | [4] | K_m | $q(H) \leq (17n+1)/15$
 \hline | | | $n \geq 4$
 | | | $q(H) \leq n + Cn^\gamma$
 \hline | | | $\gamma = 2/(m-1)$, $n \geq n_0$
 | | | $m \geq 4$ |
| EFRS | [5] | C_{2m+1} | $q(H) \leq n(1 + \epsilon_m)$
 \hline | | | $n \geq n_0$ |
| BF | [10] | $s(G) = 1$
 \hline | | | T
 \hline | | | $G \subseteq M(\chi(G), m)$
 for some m
 | | | $n \geq n_0$ |
| EFRS | [14] | arbitrary | $q(H) \leq n + C_1n^\alpha$
 \hline | | | $\Delta(H) \leq C_2n^\alpha$
 \hline | | | $\alpha = 1/(2p(G) - 1)$
 \hline | | | $n \geq n_0$ |
| EFRS | [15] | $K_\ell + \bar{K}_m$ | T
 \hline | | | $n \geq 3m - 3$ |
| FRSh | [17] | C_{2m+1} | B_{n-2}
 \hline | | | $m \geq 3$
 | | | $n \geq 4m - 13$ |

FIG. 1
6. The Road Ahead. Generally speaking, the graphs \(H \) in Fig. 1 are either extremely sparse or belong to special families (e.g. wheel, book). Directions for future research include proving that \(H \) is \(G \)-good under much weaker conditions of sparseness and, otherwise, probing the limits of Ramsey goodness. Specifically, we mention the following problems.

Problem 1 Is it true that for fixed \(G \) and \(M \), every sufficiently large connected graph \(H \) satisfying \(\Delta(H) \leq M \) is \(G \)-good?

Problem 2 Let \(f(n) \) denote the largest integer \(q \) such that every connected graph with \(n \) and \(q \) edges is \(3 \)-good. Does \(f(n)/n \to \infty \) with \(n \)?

Problem 3 Characterize those graphs \(G \) for which every every sufficiently large tree is \(G \)-good. Burr and Faudree have conjectured that \(G \) is such a graph iff \(G \subset M(\chi(G),m) \) for some \(m \). Their result in [10] proves that this is true in case \(s(G) = 1 \).

Problem 4 Is it true that the star is always the "worst" tree, i.e. for each graph \(G \)

\[
r(G,T) \leq r(G,K_{1,n-1})
\]

for every tree \(T \) or order \(n \geq \alpha_0(G) \).

References

